Question	Answer		Mark
Number			
1(a)(i)	Tension line and arrow correctly drawn and labelled Weight line and arrow correctly drawn and labelled	(1) (1)	2
	(Upthrust) Tension/ T / pull of kite on surfer		
	(Drag)		
	Weight/W/mg		
	(Tension can be on either side. If 2 marks have been awarded subtract 1 mark if the drag has been included and is not a horizontal force opposing the tension)		
1(a)(ii)	Use of correct trig function to find horizontal component of the tension $T_{\text{horizontal}} = 840 \text{ (N)}$	(1) (1)	2
	Example of calculation Horizontal component of tension = $T\cos\theta$ $T_{\text{horizontal}} = 1100 \text{ N} \times \cos 40^{\circ}$ $T_{\text{horizontal}} = 843 \text{ N}$		
1(a)(iii)	$T_{\text{vertical}} = 1100 \sin 40^\circ \text{ Or } T_{\text{vertical}} = 707 \text{ (N) seen}$	(1)	
	Use of $W = mg$	(1)	
	Use of $mg = U + T_{\text{vertical}}$ with a sensible statement discussing what would happen if $T_{\text{vertical}} = W$ Or $T_{\text{vertical}} >$ weight Or $T_{\text{vertical}} <$ weight	(1)	3
	e.g. $T_{\text{vertical}} = W \text{ Or mass} = 72 \text{ kg: Upthrust is zero}$ $T_{\text{vertical}} > \text{weight Or mass} < 72 \text{ kg: Can't have a negative upthrust}$ $T_{\text{vertical}} < \text{weight Or mass} > 72 \text{ kg} : \text{To provide some upthrust}$		
	Example of calculation $T_{\text{vertical}} = T \sin 40^{\circ} (= 707 \text{ N})$ OR $mg = U + T_{\text{vertical}}$ mg = U + 707 N $\text{mass} = \frac{707 \text{ N}}{9.81 \text{ N kg}^{-1}} = 72.1 \text{ kg}$		

*1(b)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	C	(1)	
	Max 3 The horizontal component of the tension in the line produces the forward force acting on the surfer Or horizontal component of tension = $T\cos\theta$ (accept $T_{horizontal} = 1100\cos\theta$) As the angle to the horizontal (θ) decreases Or As the angle to the vertical (θ) decreases > $T\cos\theta$ increases Or the forwards force on the surfer increases Or the smallest θ gives the maximum/greatest force	(1)	
	Work done increases	(1)	
	Power transferred to surfer= $\frac{\text{work done}}{\text{time}}$ has increased hence the power increases Or more work done per second on the surfer so the power increases	(1)	4
	Total for question		11

Question Number	Acceptable Answers		Mark
2(a)	 Laminar: Continuous lines, not crossing, below the wing, with at least 2 continuing beyond the wing Turbulent: swirls, crossing lines, changes of direction greater than 90° only above the wing, not necessarily attached to the lines from the left 	(1)	2

Question	Acceptable Answers	Mark
Number		
2(b)(i)	The idea that a (component of) lift = weight (1)	
	See $L \cos 20^\circ$ or $mg / \cos 20^\circ$ (1)	
	L = 0.66 or 0.7 (N) (1)	3
	Example of calculation Vertical component of lift = weight $L\cos 20^{\circ} = 0.063 \text{ kg} \times 9.81 \text{ N kg}^{-1}$ L = 0.66 (N)	

Question Number	Acceptable Answers		Mark
2(b)(ii)	Find the horizontal component of lift (drag) using trig or Pythagoras ($L \sin 20^\circ$, $W \tan 20^\circ$, $\sqrt{L^2 - W^2}$) Use of $F = ma$ Acceleration = (-) 3.6 to 3.7 m s ⁻² (ecf)	(1)(1)(1)	3
	Example of calculation $L_{\text{horizontal}} = -L\sin 20 = -0.66 \text{ N} \times \sin 20 = -0.226 \text{ (N)}$ acceleration $= \frac{-0.226 \text{ N}}{0.063 \text{ kg}}$ acceleration $= -3.57 \text{ m s}^{-2}$		

Acceptable Answers		Mark
Bird/leg exerts force/push (down) on ground	(1)	
<u>N3</u> ground exerts a force (up) on bird	(1)	
Force \neq / > weight Or there is a resultant/unbalanced force	(1)	4
Due to <u>N2 / N1</u> bird accelerates	(1)	4
	Acceptable AnswersBird/leg exerts force/push (down) on ground $\underline{N3}$ ground exerts a force (up) on birdForce \neq / > weight Or there is a resultant/unbalanced forceDue to $\underline{N2 / N1}$ bird accelerates	Acceptable AnswersBird/leg exerts force/push (down) on ground(1) $\underline{N3}$ ground exerts a force (up) on bird(1)Force \neq / > weight Or there is a resultant/unbalanced force(1)Due to $\underline{N2} / \underline{N1}$ bird accelerates(1)

Question	Acceptable Answers		Mark
Number			
2(c)(ii)	Maximum force read from graph = 2.00 N to 2.10 N	(1)	
	resultant force = $F - W$ (1.37 N to 1.43 N)	(1)	
	Answer = 23 m s ^{-2}	(1)	3
	Example of calculation Maximum force = 2.05 N 2.05 N - (0.063 kg x 9.81 m s ⁻²) = 0.063 kg × a a = 22.7 m s ⁻²		
	Total for question		15

Question	Answer		Mark
Number			
3(a)(i)	Weight/W/mg	(1)	
	Upthrust/U	(1)	
	Drag/Friction/Fluid resistance/F/D/V	(1)	3
	(all lines must touch the black dot and should be approximately vertical by eye) $(-1$ for each additional force)		
	upthrust upthrust upthrust		
	drag weight		
	drag weight drag and/+ weight		
*3(a)(ii)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	<u>Upthrust</u> is greater for the larger bubble	(1)	
	Drag/friction increases	(1)	
	Upthrust increases more than drag Or greater (initial) resultant force on bubble		
	Or upthrust is related to volume/radius ³ and drag related to area/radius ⁽²⁾	(1)	3
3(b)(i)	Both graphs straight from $t = 0$ (labels not required)	(1)	
	Initial gradient of A less than gradient of B (minimum of 1 label required)	(1)	2
	(The lines do not have to meet i.e. the lines could stop before the meeting point The lines can start anywhere on the displacement axes)		
	s b s b b b b b b b b b b b b b b b b b		

3(b)(ii)	Measurement from photographs 0.5 - 0.7 (cm)	(1)	
	Use of distance = measurement \times 12	(1)	
	Use of speed = distance/time	(1)	
	speed = $0.18 - 0.25$ m s ⁻¹	(1)	4
	Example of calculation		
	Measurement = 0.55 cm Distance = 0.55×10^{-2} m× 12 = 6.6 × 10^{-2} m		
	$\begin{array}{c} \text{Distance} - 0.55 \times 10^{-1} \text{ m} \times 12 = 0.0 \times 10^{-1} \text{ m} \\ \text{or read} 6.6 \times 10^{-2} \text{ m} \end{array}$		
	speed = $\frac{0.33 \text{ s}}{0.33 \text{ s}}$		
	speed = 0.20 m s^{-1}		
3(c)(i)	(Stokes' law is only for) small (solid) spheres		
	Or(Stokes' law is only for) laminar flow		
	Or there is turbulent flow	(1)	
	Additional/less drag due to the bubbles having a non-stationary surface		
	Or Stokes' law cannot be applied to a gas bubble because they have a non-		
	stationary surface		
	Or volume/shape changes as it rises	(1)	2
*3(c)(ii)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	Either: Resultant forces method 4 marks		
	Measure the diameter/radius of the sphere (from the photograph)	(1)	
	Use of $4\pi r^3/3$ to find the volume of the sphere	(1)	
	Use $V\rho g$ to find the upthrust / weight of the bubble	(1)	
	Drag = upthrust – weight	(1)	
	Or: Stokes' law method 2 marks		
	Measure the diameter/radius of the sphere (from the photograph)	(1)	
	Calculate the (terminal) velocity using $v = s/t$ and substitute into $F = 6\pi r \eta v$	(1)	4
	Total for question		18

Question Number	Answer		Mark
4(a)	Use of pythagoras Or trigonometry to find the resultant velocity $v = 1.9 \text{ m s}^{-1}$ Use of trig to find the direction Direction = 54° $\frac{\text{Example of calculations}}{v = \sqrt{(1.1 \text{ m s}^{-1})^2 + (1.5 \text{ m s}^{-1})^2}}$ $v = 1.86 \text{ m s}^{-1}$ Direction = $\tan^{-1} \frac{1.5 \text{ m s}^{-1}}{1.1 \text{ m s}^{-1}}$ Direction = 53.74 °	(1) (1) (1) (1)	4
4(b)	Construction of a correct vector triangle or parallelogram (from which a measurement for the resultant could be made)	(1)	
	$v = 2.2 \pm 0.1 \text{ m s}^{-1}$	(1)	
	Direction = $38 \pm 2^{\circ}$	(1)	3
	(Correct answers calculated mathematically rather than with a vector diagram will only score MP2 and MP3) 38° 1.5 m s^{1} 1.5 m s^{-1} 1.1 m s^{-1} 1.1 m s^{-1}		
	Total for question		7

Question	Answer	Mark
Number		
5	Newton's 3 rd law:	
	The minimum: Every action has an equal and opposite reaction	
	OR	
	More detail: An object A exerts a force on object B then object B exerts an equal and opposite force on object A (1)	
	• Forces act on different bodies OR forces act on the road and the tyre (1)	
	• Forces act in <u>opposite directions</u> OR (directions of the) forces are backwards and forwards (1)	
	• Forces have same magnitude/size OR both forces are 300 N (1)	
	• Forces are of same kind OR forces are both are (frictional) contact forces/friction (1)	5
	Total for question	5